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Abstract

In this paper we propose a discontinuous Galerkin scheme for the numerical approximation of unsteady heat conduc-
tion and diffusion problems in multi dimensions. The scheme is based on a discrete space–time variational formulation and
uses an explicit approximative solution as predictor. This predictor is obtained by a Taylor expansion about the barycenter
of each grid cell at the old time level in which all time or mixed space–time derivatives are replaced by space derivatives
using the differential equation several times. The heat flux between adjacent grid cells is approximated by a local analytical
solution. It takes into account that the approximate solution may be discontinuous at grid cell interfaces and allows the
approximation of discontinuities in the heat conduction coefficient. The presented explicit scheme has to satisfy a typical
parabolic stability restriction. The loss of efficiency, especially in the case of strongly varying sizes of cells in unstructured
grids, is circumvented by allowing different time steps in each grid cell which are adopted to the local stability restrictions.
We discuss the linear stability properties in this case of varying diffusion coefficients, varying space increments and local
time steps and extent these considerations also to a modified symmetric interior penalization scheme. In numerical simu-
lations we show the efficiency and the optimal order of convergence in space and time.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The usual numerical approximation for the transient heat conduction equation are implicit finite difference
and finite element schemes with second-order accuracy in space and time. Explicit schemes need less compu-
tational effort per time step, but have to satisfy a severe time step restriction for stability. The time step has to
be proportional to the square of the diameter of the smallest grid cell. This restrictive time step limitation may
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strongly reduce the efficiency of the explicit approach, especially in the case of strongly varying grid cell sizes.
In this paper, we propose an explicit discontinuous Galerkin scheme where the strong drop in efficiency is cir-
cumvented by local time-stepping. The scheme is designed such that every grid cell runs with its own time step
as given by the local stability restriction – global time levels are no longer necessary. The scheme proposed is of
arbitrary order of accuracy, both in space and time. As a discontinuous Galerkin finite element scheme it is
applied to quite general unstructured grids, e.g., with hanging nodes. With these features the scheme seems to
be ideal for highly unsteady problems on strongly varying spatial grids or for solutions with locally quite dif-
ferent behavior.

The discontinuous Galerkin (DG) finite element schemes scheme was originally proposed by Reed
and Hill [17] in 1973 for the numerical solution of neutron transport and by Nitsche [16] in 1971
for the approximation of elliptic equations. The application to time dependent hyperbolic conservation
laws was starting with the work of Cockburn and Shu [8]. For hyperbolic problems it turned out
within the last decade that DG schemes are one of the most interesting candidates to construct high
order schemes for complex geometries. This is due to the fact that in the DG approach the approx-
imate solutions are allowed to be discontinuous at the grid cell interfaces. The numerical flux takes
into account the discontinuity and uses information of the break up of these discontinuities into dif-
ferent waves. How to do this in a proper way has been shown within the development of the finite
volume schemes. Even in the case of the approximation of strong local gradients on a coarse grid,
this construction still leads to a consistent approximation, e.g., in terms of approximate values for
the averages of the grid cells. By this, it is possible to establish a consistent and stable approximation
of strong gradients and even the shock-capturing property. For a review of the development of DG
methods see [7].

The definition of appropriate numerical fluxes for diffusion terms needed some additional work of research.
The jumps of the approximate solution has to be taken into account in a proper way. This is more subtle for
diffusion terms, because the flux involves derivatives of the solution. To take simply the arithmetic mean of the
derivatives from the right and the left may be inconsistent for DG or FV schemes, because the influence of the
jump is neglected. A number of corrections and better definitions of the diffusion fluxes has been proposed. A
unified formulation and analysis for the stationary case has been given by Arnold et al. in [2] and was contin-
ued in [3].

In [10] we recently proposed for the unsteady one-dimensional case the use of the exact solution of the ini-
tial value problem with piecewise polynomial initial data to get an appropriate diffusion flux for finite volume
and discontinuous Galerkin schemes. The flux of this local solution is defined to be the numerical flux at the
grid cell interfaces. In combination with a variational formulation performing a second partial integration it
was observed that this approach also recovers the symmetric interior penalty (SIP) discontinuous Galerkin
scheme, already proposed in [16] for the approximation of elliptic equations, and gives a physical foundation
of this method. In this paper, the so-called dGRP method (diffusive generalized Riemann problem) is extended
and formulated in multi space dimensions on unstructured grids for general diffusion problems including dis-
continuous and nonlinear diffusion coefficients. The scheme allows the approximation of heat conduction
problems across media where the thermal coefficient is discontinuous conforming to the grid. Due to the local-
ity of this scheme we are able to introduce time-consistent local time-stepping which strongly increases the
efficiency. We analyze the linear stability in case of a uniform grid and extent it to non-uniform grids with
varying diffusion coefficients. The results obtained also show how to choose the penalization constants in
order to maximize the time step within an explicit scheme based on a symmetric interior penalty spatial
operator.

The format of this paper is as follows. In Section 2 we describe the DG scheme based on a space–time
expansion (STE-DG) for a quite general heat conduction equation in multi dimensions. The dGRP flux
between the grid cells is motivated by the solution of the diffusive generalized Riemann problem which is
shortly surveyed. The dGRP method is then extended to handle jumps of the heat conduction coefficient at
a material interface which is aligned with the grid. A description of the local time-stepping is included. Section
3 contains the matrix stability analysis and the implications for the choice of the optimal penalty parameter
and time step. Numerical results for a number of test problems are given in Section 4. Section 5 contains our
conclusions.
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2. A discontinuous Galerkin scheme based on a space–time expansion

2.1. Governing equation

In this section, we consider a scalar heat conduction on a space–time domain X� ½0; T � � Rd � Rþ0 of the
form
cð~x; hÞht � ~r � ðkð~x; hÞ ~rhÞ ¼ 0; for ð~x; tÞ 2 X� ½0; T �: ð2:1Þ

The desired solution is a positive function h ¼ hð~x; tÞ and represents the temperature. Further, c and k are

given positive functions of~x and h.
If the primitive function of c with respect to h:
uð~x; hÞ ¼
Z h

h0

cð~x; hÞdh ð2:2Þ
exists for each~x, then the Eq. (2.1) can also be written in the form
ut � ~r � kð~x; hðuÞÞ
cð~x; hðuÞÞ

~ru
� �

¼ 0: ð2:3Þ
Due to the positivity of c the mapping u ¼ uðhÞ is bijective. Eq. (2.3) represents the underlying physical
principle of the conservation of the internal energy uðhÞ. With the definition
lð~x; uÞ :¼ kð~x; hðuÞÞ
cð~x; hðuÞÞ ð2:4Þ
Eq. (2.3) reads as
ut � ~r � ðl ~ruÞ ¼ 0: ð2:5Þ

In situations where discontinuities in the material properties cð~x; hÞ and kð~x; hÞ occur the conservative form

is the better one, because it allows to switch to a weak or variational formulation of the equation and to look
for weak solutions.

2.2. Weak formulation

For approximation the domain X is subdivided in non-overlapping spatial grid cells Qi with surfaces oQi.
To derive a weak formulation we first multiply Eq. (2.5) by a test function / ¼ /ð~xÞ and integrate over an
arbitrary space–time cell Qn

i :¼ Qi � ½tn; tnþ1�:
Z
Qn

i

ðut � ~r � ðl ~ruÞÞ/d~xdt ¼ 0: ð2:6Þ
As usual in the finite element framework we apply integration by parts of the flux terms with respect to the
space variables and obtain
Z

Qn
i

ut/d~xdt �
Z

oQn
i

l ~ru �~n/dsdt þ
Z

Qn
i

l ~ru � ~r/d~xdt ¼ 0; ð2:7Þ
where~n denotes the normal vector into the outer direction of the side faces oQn
i :¼ oQi � ½tn; tnþ1� of the space–

time cell.
We proceed by applying a second integration by parts to the volume integral in (2.7) in order to take into

account the second-order derivatives of the governing equation:Z Z

Qn

i

l ~ru � ~r/d~xdt ¼
Qn

i

~ru � l ~r/d~xdt

¼
Z

oQn
i

ul ~r/ �~ndsdt �
Z

Qn
i

u ~r � ðl ~r/Þd~xdt;
ð2:8Þ
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and end up with the weak formulation
Z
Qn

i

ut/d~xdt þ
Z

oQn
i

lðu ~r/ �~n� ~ru �~n/Þdsdt �
Z

Qn
i

u ~r � ðl ~r/Þd~xdt ¼ 0: ð2:9Þ
2.3. The discrete variational formulation

We next define the approximate solution uh ¼ uhð~x; tÞ which is at each fixed time level a piecewise polyno-
mial in space. In the grid cell Qi it is represented by
uið~x; tÞ ¼
XN ðN ;dÞ
l¼0

ûi;lðtÞ/i;lð~xÞ; ð2:10Þ
where /i;l ¼ /i;lð~xÞ; l ¼ 1; . . . ;N ðN ; dÞ are basis functions which span the space of polynomials of degree N
with support Qi, and ûi;lðtÞ; l ¼ 1; . . . ;N ðN ; dÞ, are the time dependent degrees of freedom (DOF).
N ¼ N ðN ; dÞ is the number of DOF needed in d space dimensions in order to span a polynomial space of
degree N. We use orthonormal basis functions which are constructed using the Gram–Schmidt orthogonali-
zation algorithm yielding a diagonal mass matrix, even for elements with curved boundaries.

The temporal evolution of the degrees of freedom is represented by discrete values at the different time lev-
els, e.g., at the time level tn we have
uið~x; tnÞ ¼
XN
l¼0

ûi;lðtnÞ/i;lð~xÞ ¼:
XN
l¼0

ûn
i;l/i;lð~xÞ: ð2:11Þ
We insert this approximate solution into the weak formulation (2.9) and choose the test functions equal to
the basis functions /i;l ¼ /i;lð~xÞ; l ¼ 1; . . . ;N ðN ; dÞ. As the approximate solution ui is discontinuous at ele-
ment interfaces, we have to introduce numerical approximations for the fluxes ~f :¼ l ~ru and f a :¼ lu in
the surface flux integrals, which we denote by~g and ga, respectively. The discrete weak formulation then reads
as
 Z

Qn
i

o

ot
ui/d~xdt þ

Z
oQn

i

ðga ~r/ �~n�~g �~n/Þdsdt �
Z

Qn
i

ui
~r � ðl ~r/Þd~xdt ¼ 0: ð2:12Þ
In the numerical approximation we assume that the surface flux terms cover the exchange across the inter-
face and are determined by the approximate solution from both sides, while the volume integral is evaluated
by interior values only. Using this information the volume integral term can then be evaluated more efficiently,
if the reverse integration by parts is applied:
Z

Qn
i

ui
~r � ðl ~r/Þd~xdt ¼

Z
oQn

i

½uil ~r/ �~n��dsdt �
Z

Qn
i

l ~rui � ~r/d~xdt; ð2:13Þ
where ½:�� means the evaluation of the function at the boundary of Qn
i from the interior of the grid cell. Insert-

ing this relation into the Eq. (2.12) yields the discrete variational formulation of Eq. (2.5) as
Z
Qn

i

o

ot
ui/d~xdt �

Z
oQn

i

~g �~n/dsdt þ
Z

Qn
i

l ~rui � ~r/d~xdt þ
Z

oQn
i

ga
~n dsdt ¼ 0 ð2:14Þ
with
ga
~n ¼ ga ~r/ �~n� ½f a ~r/ �~n��: ð2:15Þ
Here, we followed the variational formulation as introduced by Gassner et al. in [10]. The second partial
integration generates a numerical surface flux ga

~n additional to~g which gives adjoint consistency and is similar
to the’symmetric term’ in the Symmetric Interior Penalty (SIP) method as proposed by Hartmann and Hous-
ton [13] and the term of the BR2 scheme of Bassi and Rebay [5] involving the global lifting operator.
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The temporal evolution of the DOF of an element Qi for the time step ½tn; tnþ1� is then given by
ûnþ1
i � ûn

i ¼ �
Z

Qn
i

l ~rui � ~r/d~xdt þ
Z

oQn
i

~g �~n/dsdt �
Z

oQn
i

ga
~n dsdt: ð2:16Þ
The proper definition of these numerical flux functions guarantees stability and consistency of the approx-
imation and is given in the following Section 2.4.

The space–time integrals in (2.16) are computed using Gaussian quadrature formulae in space and time.
The accuracy of the Gauss quadrature rule in space is chosen in such a way that polynomials of degree
2N � 1 are integrated exactly, since the flux is multiplied by a test function which is a polynomial in space.
For the quadrature rule in time we can use a formula that integrates exactly a polynomial of degree
#
N
2

:¼
N
2

for N even;
Nþ1

2
for N odd;

(
ð2:17Þ
as the test functions do not depend on the time variable and for stability restrictions we have to satisfy
Dt � Dx2 as usual for explicit schemes. We will come back to this point in Section 3.

How to evaluate the arguments of the numerical flux functions at space–time Gaussian points is still open,
since the DOF ûn

i define the numerical solution only at t ¼ tn. This procedure is described in Section 2.5.

2.4. Numerical fluxes

For the approximation of the fluxes ~g and ga
~n into normal direction to a face of a grid cell, the rotational

invariance of Eq. (2.5) is used. For every quadrature point on the element faces, the gradient of the state var-
iable ~ru is rotated from the global~x-system into the~n-system aligned with normal and tangential directions of
the side surface. Here, the first component n1 of the~n-system is aligned with the outward-pointing normal vec-
tor of the surface. The transformation can be written as
~r~nu ¼ Tr~xu; ð2:18Þ
where the subscripts denote the gradients with respect to the corresponding coordinates.
Using the rotational invariance
~f ðu; ~r~xuÞ �~n ¼ f1ðu; ~r~nuÞ for all ~n 2 Rd ; ð2:19Þ
we can write
~f ðu;r~xuÞ �~n ¼ lun1
¼: f~n ð2:20Þ
Hence, the multi-dimensional problem can be reduced to a one-dimensional problem into the direction nor-
mal to the element surface:
~gðl�; u�; ~r~xu�Þ �~n ¼: g~nðl�; u�; u�n1
Þ; ð2:21Þ
where ‘‘�” and ‘‘+” denote the values at the grid cell interfaces from inside and outside of the considered grid
cell.

In [10] we constructed a diffusion flux in one space dimension which is based on the solution of the general-
ized Riemann problem for linear diffusion equations and called it the dGRP flux (diffusive Generalized Rie-
mann Problem). We also showed how to extend this numerical flux to nonlinear diffusion problems. In the
following we extend this approach to discontinuous diffusion coefficients where the discontinuity is aligned
with the grid. We consider first the linear diffusive generalized Riemann problem in this case and present
the numerical fluxes g~n and ga

~n based on this local solution. These considerations also lead to some new insight
extending the dGRP flux to nonlinear equations. In this case we may have a similar situation, since at grid cell
interfaces the numerical solution may be discontinuous, that is, uþ 6¼ u�; uþn1

6¼ u�n1
, and the heat conduction

coefficients may have the different limits lþ 6¼ l� from both sides of the interface.
The computation of the numerical fluxes g~n and ga

~n is based on the initial value problem for the linear dif-
fusion equation with piecewise linear data and piecewise constant diffusion coefficients
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o

ot
v ¼ kðn1Þ

o2

on2
1

v;

vðn1; 0Þ ¼
uþ þ n1uþn1

; for n1 > 0;

u� þ n1u�n1
; for n1 < 0;

(

kðn1Þ ¼
lþ; for n1 > 0;

l�; for n1 < 0:

�
ð2:22Þ
As previously defined, n1 denotes the coordinate into the normal direction of the grid cell surface. The exact
solution of this initial value problem (2.22) is used to get information about the local behavior of the solution
at the interface and to define the diffusion fluxes g~n and ga

~n as
g~n ¼
2sut

ffiffiffiffiffiffiffiffiffiffiffi
lþl�
pffiffiffiffiffi

Dt
p ffiffiffi

p
p ffiffiffiffiffiffi

lþ
p

þ ffiffiffiffiffiffi
l�
p� �þ ffiffiffiffiffiffi

lþ
p

f �~n þ
ffiffiffiffiffiffi
l�
p

f þ~nffiffiffiffiffiffi
lþ
p

þ ffiffiffiffiffiffi
l�
p ; ð2:23Þ
and
ga
~n ¼ ðuSk � u�Þl�/�n1

ð2:24Þ
with
uSk ¼
ffiffiffiffiffiffi
lþ
p

uþ þ ffiffiffiffiffiffi
l�
p

u�ffiffiffiffiffiffi
lþ
p

þ ffiffiffiffiffiffi
l�
p : ð2:25Þ
The derivation of these fluxes can be found in Appendix A.

2.5. Space–time expansion

A question which is still open is how to get the values uið~x; tÞ at the quadrature points in the space–time
interval Qn

i , which are needed as arguments for the flux functions in the evolution equation for the DOF
(2.16). The numerical solution is only known at t ¼ tn. In the interval Qn

i , we use instead a high order approx-
imation ~uið~x; tÞ of this solution obtained by considering a local Cauchy problem with initial condition
~uið~x; tnÞ ¼ uið~x; tnÞ. This local Cauchy problem can be solved approximately as follows. We start with a Taylor
expansion in space and time
~uð~x; tÞ ¼ uið~xbary; tnÞ þ
XN

j¼1

1

j!
ðt � tnÞ o

ot
þ ð~x�~xbaryÞ � ~r

� �j

uið~xbary; tnÞ ð2:26Þ
about the barycenter~xbary of the grid cell Qi at the old time level tn. This space–time Taylor expansion provides
approximate values for ~u and ~r~u at all space–time points ð~x; tÞ 2 Qn

i , if all the values of the space–time deriv-
atives at ð~xi; tnÞ are known.

While the pure space derivatives at ð~xi; tnÞ are readily available within the DG framework, the time deriv-
atives and mixed space–time derivatives have to be computed using the so-called Cauchy–Kovalevskaya (CK)
procedure. This procedure applies the evolution equation several times to re-write the time derivatives as space
derivatives and is discussed in detail in the next subsection. The use of a Taylor expansion in space–time at the
barycenter has already been proposed by Harten et al. [12] within the ENO finite volume framework. We note
that the space–time expansion (2.26) has not necessarily to be performed in the conservative variable u, but in
any other variable connected to u via a unique mapping. It may be easier and more efficient to build the space–
time expansion in the temperature variable h based on (2.1). As long as the variational formulation is based on
the conservative form, the scheme is still exactly conservative.

2.6. Cauchy–Kovalevskaya procedure

If the space–time expansion about a grid cell barycenter ~xBi is based on the conservative form (2.5), we
obtain for three space dimensions d ¼ 3
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omþpþqþou
oxm

1 xp
2xq

3to
¼ omþpþqþoðlð~xBi ; uÞux1

Þ
oxmþ1

1 xp
2xq

3to�1
þ omþpþqþoðlð~xBi ; uÞux2

Þ
oxm

1 xpþ1
2 xq

3to�1
þ omþpþqþoðlð~xBi ; uÞux3

Þ
oxm

1 xp
2xqþ1

3 to�1
ð2:27Þ
This equation is obtained for any set of natural numbers m; p; q; o by differentiating the governing Eq. (2.5)
several times in space and time. On the left hand side the time derivative of order o appears, while all expres-
sions on the right hand side contain time derivatives of the lower order o� 1 only. Hence, with this relation all
space–time derivatives of u can be computed in a successive way starting from pure space derivatives.

The structure of this algorithm is in a Fortran-like coding as

DO o = 1, (N-1)/2

DO m = 0, N-o
DO p = 0, N-o-m

DO q = 0, N-o-m-p

!Compute u ðo 	 t;m 	 x1 ;p 	 x2 ;q 	 x3Þ from already computed

!space-time derivatives

ENDDO

ENDDO

ENDDO

ENDDO

In the exterior loop, we begin from o ¼ 1 up to # N�1
2

, where N is the maximal degree of the polynomial
basis functions, while in the inner loops the higher order space derivatives are calculated. Next we consider
the CK-procedure for some special Eq. (2.1).

2.6.1. The linear case

If the material properties are constant in each element Qi, that is, cð~x; hÞ ¼ ci and kð~x; hÞ ¼ ki, and
lð~x; hÞ ¼ li ¼ ki

ci
, the space–time expansion and the CK-procedure are directly done in u. In the CK loop,

Eq. (2.27) can be easily evaluated, since l ¼ constant in each grid cell Qi.

2.6.2. The nonlinear case

If l is a function of u, the evaluation of Eq. (2.27) becomes more difficult. In the following, we describe how
this can be done for two examples of material laws. We restrict ourselves for simplicity to one spatial dimen-
sion and name its coordinate x. The main tool for the CK-procedure is the generalized Leibniz rule in the form
o
mþo

oxmto
ðfgÞ ¼

Xm

i¼0

Xo

l¼0

m

i

� �
o

l

� �
o

m�iþo�l

oxm�ito�l
f

o
iþl

oxitl
g ð2:28Þ
and its reformulation
omþo

oxmto

f
g

� �
¼ omþo

oxmto
ðf Þ � 1

g

Xm

i¼0

Xo

l¼0|fflfflfflffl{zfflfflfflffl}
iþl 6¼mþo

m

i

� �
o

l

� �
om�iþo�l

oxm�ito�l
g

oiþl

oxitl

f
g

� �
ð2:29Þ
as a rule for differentiating quotients [9]. The functions f ¼ f ðx; tÞ and g ¼ gðx; tÞ are always assumed to be
sufficiently smooth.

2.6.3. Nonlinear examples

We first consider the one-dimensional equation
1

h
ht � hxx ¼ 0; ð2:30Þ
which may by written in conservative form
ut � ðexpðuÞuxÞx ¼ 0 ð2:31Þ
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with the internal energy given by u ¼ ln h.
While the variational formulation is based on the conservative formulation (2.31), it is obvious that the CK-

procedure based on this form is much more complicated than if it is based on the temperature Eq. (2.30). With
Eq. (2.30) we get
o
mþoh

oxmto
¼

omþo�1 h o2

ox2 h
	 


oxmto�1
; ð2:32Þ
which can easily be evaluated in the CK-procedure using the Leibniz rule (2.28). The space derivatives of h can
be approximated by L2-projection of the function hðuÞ ¼ expðuÞ onto the functional basis with the desired or-
der of accuracy.

Another example for the nonlinear case is
ð1þ ahÞht �
o

ox
ðð1þ bhÞhxÞ ¼ 0: ð2:33Þ
Here, the conservative variable u is given by u ¼ hþ a
2
h2. As h > 0, the re-mapping hðuÞ is uniquely defined

by
h ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2au
p

a
: ð2:34Þ
Eq. (2.33) becomes in the conservative variable u
ut �
o

ox1

1þ b �1þ
ffiffiffiffiffiffiffiffiffi
1þ2au
p

a

1þ a �1þ
ffiffiffiffiffiffiffiffiffi
1þ2au
p

a

ux1

 !
¼ 0: ð2:35Þ
Again, a CK-procedure in u would be very cumbersome. With Eq. (2.33), we can write
o
mþoh

oxm
1 to
¼ o

mþo�1

oxm
1 to�1

o
ox1
ðð1þ bhÞhx1

Þ
1þ ah

ð2:36Þ
which is much easier to evaluate in the CK loop. We introduce an auxiliary variable h1ðx; tÞ ¼ ð1þ bhÞhx1
,

whose space–time derivatives are computed and stored in the CK loop using Eq. (2.28). With h1 and its
space–time derivatives, we can finally compute the space–time derivatives of h by applying Eq. (2.29) within
the same CK loop.

2.7. Local time-stepping

As the method proposed is an explicit scheme, it has to satisfy a time step restriction (3.42) for stability
which depends on the local element size, the local order of accuracy and the local value of the approximation
in the nonlinear case. Hence, the maximal time step given by this restriction may strongly vary in the compu-
tational domain. Standard explicit schemes have to use the minimal value over the whole domain as global
time step to ensure stability. To overcome this inefficiency, the authors showed in [15] how to make use of
the space–time approach and the locality of the discontinuous Galerkin discretization to introduce a natural

arbitrary high order accurate local time-stepping. In the following, the algorithm is briefly described and
adopted for the diffusion equations.

We give up the assumption that all grid cells run with the same time step and therefore we do not have any
longer a common time level. Let us denote the actual local time level in grid cell Qi by tn

i . The degrees of free-
dom ûn

i represent the solution at tn
i in this grid cell. Furthermore, each cell may evolve in time with its local

time step Dtn
i which has to satisfy the local stability restriction. The stability restriction is discussed in the next

subsection. With Dtn
i , the next local time level in Qi is given as
tnþ1
i ¼ tn

i þ Dtn
i : ð2:37Þ
In order to evolve the ûi from time level tn
i to tnþ1

i , the right hand side of the variational formulation Eq.
(2.16) has to be determined for every Qi. To guarantee that this is done in a proper way, the succession of
evolving elements has to be controlled.
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To illustrate how the time-stepping procedure works, we sketched in one space dimension a sequence of
four time steps with three adjacent grid cells in Fig. 1 starting from a common time level t0

1 ¼ t0
2 ¼

t0
3 ¼ t0 ¼ 0. After the determination of all local time steps, which are assumed to be different in our example,

the space–time Taylor expansions are calculated in each element. This results in an approximate solution ~u in
every space–time cell Qn

i - in our example we have i ¼ 1; 2; 3. These space–time polynomials are stored. Thus
the variables that hold the degrees of freedom (DOF) û0

i at the old time level t0
i may be overwritten in subse-

quent steps in order to evolve them to DOF at the new time level û1
i . For clarity we call DOF without physical

meaning, obtained by partial evaluation of the integrals in (2.16), by û	i . In a first step the flux volume integral
in (2.16) is evaluated for each element Qi and its contribution is simply added to û	i . In our example this state is
given in the upper left corner of Fig. 1. For each space–time grid cell, the space–time polynomial is determined
and the contribution of the volume integral is already contained in the û	i . The surface flux contributions
involving neighboring grid cells are considered in the next step.

The local time-stepping algorithm relies on the following evolve condition. The update of the DOF in Qi

can be finished, if
tnþ1
i 6 minftnþ1

j g; 8j : Qj \ Qi 6¼ ; ð2:38Þ
is satisfied, because all the neighboring data for the flux calculation are available. In our example, the only grid
cell satisfying this condition is Q2. So Q2 can be evolved to the next time level t1

2. To do so, the flux contribu-
tions at the right and left cell interface are computed and simply added to the DOF û	2. The flux integrals are
calculated using Gauss quadrature formulae from t ¼ t0

2 to t ¼ t1
2 at the right interface oQ2þ1

2
and the left inter-

face oQ2�1
2
. The arguments for the numerical flux functions at time Gaussian points are obtained from the left

and right space–time polynomials. If both flux contributions are added to û	2, the update is completed and the
DOF of Q2 at the new time level t1

2 are known, û	2 become û1
2.

In order to avoid the calculation of interface fluxes twice and to get an efficient conservative scheme, the
flux contributions computed to evolve the element 2 are simultaneously added with the minus sign also to
the DOF of the neighboring elements resulting in updated values û	1 and û	3. For Q2 we proceed as in the first
time step. A new space–time polynomial is constructed on Q2 � ½t1

2; t
2
2� and the volume integral contribution is

added to the local DOF û1
2, now named by û	2. We are then in the situation sketched in the upper right corner

of Fig. 1. For given boundary values, now Q1 satisfies the evolve condition and can be advanced to t1
1. As
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Fig. 1. Sequence of steps 1–4 of a computation with three different elements and local time-stepping.



5658 F. Lörcher et al. / Journal of Computational Physics 227 (2008) 5649–5670
before, the volume integral contribution was already computed and added in a first step. But in this case, also
a part of the flux contributions has already been added to the û	1 during the previous evolution of Q2. Thus,
only the missing flux contributions, which are sketched in the lower left corner of Fig. 1, have to be added.
Namely, on the interface oQ1þ1

2
, the flux integral has to be computed with a quadrature formula from t1

2 to
t1
1. After the step of calculating the missing pieces of the flux surface integrals on both sides the update of

Q1 is completed and û	1 get û1
1. As before, the flux integral computed on this shared interface is not only added

to û	1, but also to the û	2. For our example we are now at the left lower diagram.
In general, the time interval, for which the flux contribution at the interface shared by an element Qi and an

adjacent element Qj has to be computed in the evolution step from û	i to ûnþ1
i , is
½tH

ij ; t
nþ1
i � ¼ ½maxðtn

i ; t
n
j Þ; tnþ1

i � ð2:39Þ
After the evolution step the whole update is completed for Qi. Beside the new time levels and the space–time
polynomial from the neighboring grid cells no additional information is necessary for the whole evolution
step. In this manner, the algorithm continues by searching for elements satisfying the evolve condition
(2.38). All elements are evolved in a suitable order by evaluating the different terms of the discrete variational
formulation (2.16) in an optimal order. At each time, the interface fluxes are defined uniquely for both adja-
cent elements, making the scheme exactly conservative. In our example we can next advance and complete the
update of grid cell Q2 again and proceed the calculation, see Fig. 1.

The presented local time-stepping algorithm minimizes the total number of time steps for a computation
with fixed end time. However in some cases where the difference of time levels of adjacent grid cells are very
small compared to the local time steps, the efficiency of the presented local time-stepping algorithm may
decrease. To overcome this deficiency we locally synchronize the time levels of those identified cells. It is also
no problem to introduce some common global time levels as needed for example at the end time of the
computation.
3. Matrix stability analysis for the linear 1D case

As every explicit time-stepping scheme, the STE-DG scheme has a time step restriction for stability. In this
subsection, we determine the maximal stability region of the scheme applied to the one-dimensional linear heat
conduction equation
ut þ luxx ¼ 0 with l 2 Rþ: ð3:40Þ

The stability analysis of the STE-DG scheme is performed for global time-stepping as well as for local time-

stepping.
To analyze the stability of the scheme, a periodic problem with a given spatial discretization is considered.

As the problem (3.40) is linear, one can construct a matrix W such that
ûnew ¼W ûold; ð3:41Þ

where ûold denote DOF at a common time level told and ûnew denote DOF at a common time level tnew with
tnew > told. W ¼WðDtiÞ depends on the time steps Dti of each element Qi. Following the matrix method of sta-
bility analysis described in [14], the scheme is stable, if the spectral radius qðWÞ is lower or equal to 1.

We first consider uniform grid spacing and uniform polynomial order, thus, Dx ¼ const and Dt ¼ const in
the whole computational domain. For an explicit DG scheme discretizing equation (3.40), a stability restric-
tion for the time step has the form
Dt 6 bðNÞ Dx2

ð2N þ 1Þ2l
ffiffiffi
d
p ; ð3:42Þ
where N again denotes the polynomial degree and the coefficient b is a function of N. To transfer the formula
to the multi-dimensional case we also included the dimension, here we have d ¼ 1. For d > 1, we define Dx of
an element Qi by two times the smallest distance of its barycenter to one of its surfaces. With Eq. (3.42), we can
re-write the numerical flux (2.23) for the case of constant l in the form
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g~n ¼
2ð2N þ 1Þld0:25

Dx
ffiffiffi
b
p ffiffiffi

p
p sutþ ff~ng ¼: gsutþ ff~ng: ð3:43Þ
Using this numerical flux, we obtain stability numbers b as presented in Table 1.

3.1. Optimization of the time step and the penalization parameter

In the following we introduce a penalization parameter into the diffusion flux (3.43). This can be done in a
simple way, if we distinguish between the b occurring in the time step restriction (3.42) from the one occurring
in the numerical flux (3.43), which we call now penalization parameter ~b. In the following we compute for
every polynomial degree N the stability number b for varying ~b. The resulting stability regions are presented
in Fig. 2 for polynomial degrees N ¼ 1 to N ¼ 7.

We can see, that the maximal b can even be slightly improved compared to the dGRP flux in Table 1 by
choosing an optimal ~b. The stability regions are similar for each N. For large values of ~b the jump penalization
constant g becomes too small and the schemes are unconditionally unstable. For small values of ~b, the b
decreases linearly with ~b, and thus allowing only small time steps. This corresponds well to the stiffness intro-
duced by a large penalization constant in the equation when solving stationary heat equation with the SIP-DG
method. In between, there is an interval for ~b, in which b is constant and has its maximum, we denote this
value by bmax. We further denote the upper limit of the ~b interval by ~bmax and the lower limit by ~bmin. Hence,
in order to get the maximal time step, we should choose a ~b such that ~bmin 6

~b 6 ~bmax. The values of ~bmin and
~bmax as well as the value of bmax corresponding to Fig. 2 are listed in Table 2.
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Fig. 2. Stability regions b over ~b for N ¼ 1 to N ¼ 7 on a uniform grid.

2
ty numbers of the optimized STE-DG scheme

1 2 3 4 5 6 7

1.46 0.8 0.54 0.355 0.28 0.21 0.16
1.0 0.33 0.20 0.14 0.10 0.08 0.06
2.8 0.86 0.40 0.24 0.16 0.12 0.09
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3.2. Stability and choice of the penalty constant for a non-uniform grid

If the grid cell size Dx, the polynomial degree N or the heat conduction coefficient l jump at the interface Sk,
the jump penalization factor g jumps as well when the optimal ~b� ¼ ~b�maxðN�Þ is chosen. In this case, we get
from Eq. (2.23) and using Eq. (3.42) the values:
g� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
lþl�
pffiffiffiffiffiffiffiffi

Dt�
p ffiffiffi

p
p ffiffiffiffiffiffi

lþ
p

þ ffiffiffiffiffiffi
l�
p� � ¼ 2ð2N� þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffi
lþl�
p ffiffiffiffiffiffi

l�
p

d0:25

Dx�
ffiffiffiffiffiffi
~b�

q ffiffiffi
p
p ffiffiffiffiffiffi

lþ
p

þ ffiffiffiffiffiffi
l�
p� � ð3:44Þ
To retain exact conservation, a unique gSk
has to be defined at the interface Sk. For a fixed given gSk

, the
effective values of ~b� are given for the adjacent elements by
~b� ¼ 4ð2N� þ 1Þ2lþl�l�
ffiffiffi
d
p

Dx�2g2
Sk

pð
ffiffiffiffiffiffi
lþ
p

þ ffiffiffiffiffiffi
l�
p Þ2

: ð3:45Þ
We now postulate that the point ð~b; bÞ has to lie within the stability regions in Table 2 locally for both grid
cells. The validity of this requirement in the sense that it gives save estimations of time steps and penalty
parameters is confirmed by discrete stability analysis using the matrix method for a large number of non-con-
forming grid configurations. Otherwise the approximate solution becomes unstable. This requirement leads to
the two conditions
~b� 6 ~b�max: ð3:46Þ
From this the following condition on gSk
is obtained:
gSk
P

2
ffiffiffiffiffiffiffiffiffiffiffi
lþl�
p

d0:25ffiffiffi
p
p ffiffiffiffiffiffi

lþ
p

þ ffiffiffiffiffiffi
l�
p� � max

ð2N� þ 1Þ
ffiffiffiffiffiffi
l�

pffiffiffiffiffiffiffiffiffi
~b�max

q
Dx�

0
B@

1
CA: ð3:47Þ
Hence, the minimal value of gSk
that satisfies this inequality should be chosen in order to maximize the time

step. The maximal time step Dti of a grid cell Qi is then computed using the diagrams in Fig. 2. To do this, the
minimal effective ~b on oQi is determined first:
~bi;eff ¼ min
oQi

4ð2Ni þ 1Þ2lþl�l�
ffiffiffi
d
p

Dx2
i g

2
Sk

pð
ffiffiffiffiffiffi
lþ
p

þ ffiffiffiffiffiffi
l�
p Þ2

¼ ð2Ni þ 1Þ2

Dx2
i

min
oQi

l�min
~b�maxDx�2

ð2N� þ 1Þ2l�

 ! !
; ð3:48Þ
with the minimal gSk
. Then, the maximal stable bi can be determined via the stability diagrams. For our prac-

tical simulations we simplified the ð~b;bÞ-diagrams by assuming a straight line in the interval ½0; ~bmin� and ~bmax

from 0 to bmax and obtained the simple formula
bi ¼ bmaxðN iÞmin 1;
~bi;eff

~bminðNiÞ

 !
: ð3:49Þ
for the computation of b.
With the minimal gSk

from (3.47) and the time steps computed via (3.49) we performed the matrix stability
analysis in the case N ¼ 3 for some non-uniform grids and local time-stepping. The spectral radius of W was
computed for varying bmax with ~bmin and ~bmax as given in Table 2. The results as presented in Fig. 3 indicate
that the most restrictive bmax is obtained for the case of uniform grid. This observation held in all our calcu-
lations, for other considered space grids and other orders of accuracy as well. Also in numerical experiments in
two and three space dimensions, we never encountered problems even with jumping l or local varying N.
Hence, we state that using the numerical fluxes and time step restrictions as derived in this section are reliable
for computations on non-uniform grids with local time-stepping.
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5662 F. Lörcher et al. / Journal of Computational Physics 227 (2008) 5649–5670
4. Numerical results

4.1. One-dimensional heat conduction with a robin boundary condition

The first test case is a linear heat conduction problem in one space dimension and models the transient heat
distribution in a wall which separates two states with different constant temperatures. The problem is assumed
to be one-dimensional with constant l ¼ 0:5 on the space domain X ¼ ½0; 1�. This test case with given analyt-
ical solution validates the numerical method completed by Robin boundary conditions. On both domain
boundaries XC1 at x ¼ 0 and XC2 at x ¼ 1, we impose Robin boundary conditions of the form
Table
Experi

N ¼ 4;
ku� u
OL2

N ¼ 5;
ku� u
OL2

Table
Error

N ¼ 2;
CPU-t
ku� u
OL2

N ¼ 6;
CPU-t
ku� u
OL2

N ¼ 7;
CPU-t
ku� u
OL2
aCiðuCi � uðxÞÞ þ l
o

ox
ðuÞ ¼ 0 ð4:50Þ
with aC1 ¼ 5:0; aC2 ¼ 6:0; uC1 ¼ 0 and uC2 ¼ 0:5. The initial condition is u ¼ 1 on X. An analytical solution is
given in [6]. We compare numerical results for this problem computed on different space discretizations with 2,
4, 8, and 16 grid cells for the polynomial degree N ¼ 4 and N ¼ 5. The comparison with the exact solution
shows the decrease of the error and gives information about the experimental order of convergence. Here,
we used a coarse grid in combination with high order schemes. The L2-error between the numerical solution
and the exact one at the time t ¼ 1 is given in Table 3. The results clearly indicate that the optimal order of
convergence is achieved.

4.2. Two-dimensional convergence study

The second test case is a convergence study in two space dimensions for the linear heat conduction Eq.
(2.5). The computational domain is X ¼ ½0; 1� � ½0; 1�. The initial condition is u ¼ 0 on X. At the domain
boundaries x1 ¼ 1 and x2 ¼ 1, we impose the Dirichlet conditions u ¼ 1, while at x1 ¼ 0 and x2 ¼ 0, we impose
homogeneous von Neumann conditions o

o~n u ¼ 0. The analytical transient solution is given in [18]. Results of a
convergence study in the two-dimensional case at t ¼ 1 are given in Table 4. They clearly show that the
3
mental order of convergence for test case 4.1 for the polynomial degree N ¼ 4 and N ¼ 5

nCells 2 4 8 16

exactkL2
1.32E�05 3.83E�07 1.09E�08 3.21E�10

5.10 5.13 5.09

nCells 1 2 4 8

exactkL2
6.61E�05 1.05E�06 1.59E�08 2.53E�10

5.97 6.05 5.98

4
and experimental order of convergence for test case Section 4.2 and N ¼ 2, N ¼ 6, and N ¼ 7

nCells 4 16 64 256
ime (s) 1.2 7.7 49 292

exactkL2
1.26E-03 1.36E-04 1.58E-5 1.93E-6

3.21 3.10 3.03

nCells 1 4 16 64
ime (s) 0.37 6.0 93 1700

exactkL2
4.67E�06 4.05E�08 3.29E�10 2.60E�12

6.85 6.94 6.99

nCells 1 4 16 64
ime (s) 2.1 31.25 320 5200

exactkL2
3.59E�07 1.49E�09 6.00E�12 1.43E�14

7.92 7.96 7.95
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designed order of accuracy is obtained. The numerical results were obtained by using quite coarse Cartesian
grids. Here, we applied schemes with the polynomial degrees N ¼ 2;N ¼ 6 and N ¼ 7. Comparing CPU-time
and error norm of the computation N ¼ 2; nCells ¼ 256 to those of the computation N ¼ 7; nCells ¼ 1, we clearly
see the gain of a high order method: the high order simulation gives better result in much lower computational
time compared to the low order simulation.

4.3. Nonlinear example

We next consider two nonlinear examples in one space dimension for the validation. In the first case, the
governing equation is given by Eq. (2.30) on the space domain X ¼ ½0; 1�. The initial temperature distribution
is given by
Table
Experi

N ¼ 2;
ku� u
OL2

N ¼ 3;
ku� u
OL2
hðx; 0Þ ¼ 1� 1

2
x2; ð4:51Þ
the boundary conditions at x ¼ 0 and x ¼ 1 are the von Neumann condition
oh
on
ðx; tÞ ¼ 0: ð4:52Þ
The analytical solution is given in [11] and reads as
hðx; tÞ ¼ 1

1þ t
1� 1

2
x2

� �
: ð4:53Þ
A convergence study at t ¼ 1 for this problem is presented in Table 5. We show there the third and fourth
order accurate STE-DG scheme on 2, 4, 8, and 16 grid cells. Also for this nonlinear problem, the optimal order
of convergence can be observed as expected.

We also applied the scheme to the nonlinear problem (2.33) for validation. For the initial condition
hðx; 0Þ ¼ 0 and the boundary conditions hð0; tÞ ¼ 1 and hð1; tÞ ¼ 0 the numerical results coincide very well
with those presented in [11] for various finite difference schemes.

4.4. Laser heat treatments

As a more advanced problem we applied the STE-DG scheme to simulate the heating of a square plate
induced by laser treatment. This process can be modeled by a linear heat conduction equation. An analytical
solution and detailed description of the problem can be found in [1]. For all calculations presented here, the
computational domain was X ¼ ½�1; 1� � ½0; 2�. The impinging of the laser beam is mathematically modeled by
a heat flux distribution f ðx; yÞ on the upper side ðx; y ¼ 2Þ of the plate and defines there the boundary condi-
tion for the simulation. The beam is either fixed at a certain position or may move parallel to the plate with
constant velocity ð~v 6¼ 0Þ. In the case of a stationary laser beam, the flux has a Gaussian distribution centered
at x ¼ x0:  !
f ðx; y ¼ 2Þ ¼ �g
Pffiffiffiffiffiffiffiffiffiffiffi

2pw2
p exp � 1

2

ðx� x0Þ2

w2
ð4:54Þ
where P denotes the nominal power of the beam and g is a coefficient that describes the laser absorption in the
material, this is, the fraction of energy that is effectively absorbed and not reflected. Although strictly speaking
5
mental order of convergence for the nonlinear test case 4.3 and N ¼ 2 and N ¼ 3

nCells 2 4 8 16

exactkL2
6.98E�04 1.06E�04 1.41E�05 1.80E�06

2.72 2.91 2.97

nCells 2 4 8 16

exactkL2
1.06E�04 9.17E�06 6.49E�07 4.21E�08

3.54 3.82 3.94
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w is the standard deviation of the Gauss distribution, it will be referred to as the width of the beam. The minus
sign in Eq. (4.54) accounts for the laser heat flux being an inward boundary flux.

If the beam moves with constant velocity v starting from x ¼ x0 along the upper side of the plate, f is given by
f ðx; y; tÞ ¼ �g
Pffiffiffiffiffiffiffiffiffiffiffi

2pw2
p exp � 1

2

ððx� x0Þ � vtÞ2

w2

 !
ð4:55Þ
At all the other boundaries an adiabatic or zero-flux condition was imposed.
Numerical results are presented for both cases. We choose a nominal power P ¼ 1:5 W and the absorption

coefficient g ¼ 0:8, the values for the material properties were: K ¼ 1 W =ðm KÞ; l ¼ 0:5 m2=s. A uniform tem-
perature uð~x; 0Þ ¼ 100 K was imposed as initial condition.

All calculations were performed in the interval 0 s 6 t 6 10 s, and the polynomial degree was chosen to N ¼ 5
on 16� 16 grid cells in the computational domain X. Note that the chosen grid is quite coarse for this problem.

4.4.1. Stationary beam fixed at x ¼ 0

The simulated Gaussian shaped beam has the width w ¼ 0:075. The resulting temperature map obtained is
shown together with the analytical solution in Figs. 4 and 5. The good agreement between the numerical
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results and the analytical solution is quite obvious. In order to determine the influence of the width of the
beam w we varied this parameter. Fig. 6 shows the temperature profile along the upper side of the plate
for two values of the beam width. In both cases the results agree very well with the analytical solutions.

4.4.2. Beam moving with constant velocity ð~v 6¼ 0Þ
Figs. 7 and 8 show now temperature maps for the beam moving along the upper side of the square with

velocity v ¼ 0:04 and beam width w ¼ 0:075. The initial position was the center of the upper boundary of
the square. Again, a good agreement with the analytical solution is observed. A variation of the width of
the beam w is shown in Fig. 9.

4.5. Transient heat conduction in rewritable optical disks

During initialization and writing on a rewritable optical disk by a laser the disk may be heated up to 700 �C.
Within the production process the amorphous sputtered phase change alloy layer has to be crystallized. The
objective of such a numerical simulation is to get information about the temperature dependent reflectivity
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Fig. 10. Sketch of the one-dimensional geometry.
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and the warpage of the disk during the process. A simple mathematical model for this process was proposed
and analyzed by van der Tempel in [19]. Neglecting lateral heat conduction the problem may be reduced to
one space dimension. The model is then given by two semi-infinite media separated by a layer which is heated
by a laser beam. This situation is sketched in in Fig. 10. A layer o with thickness l is placed between two semi-
infinite media c and s with uniform initial temperature T 0. As the heat generating layer has different material
properties than the surrounding media, the differences in the heat conduction coefficients have to be taken into
account. For this model it is furthermore assumed that
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 each medium has constant uniform thermal properties: conductivity k, density q, and specific heat cp,

 the thermal contact at all interfaces is perfect,

 conduction can be modeled by Fourier’s law.

The energy equations for the heat generating layer between the two media reads then as
oT c

ot
¼ ac

o
2T c

ox2
ð4:56Þ

oT 0

ot
¼ a0

o2T 0

ox2
þ mGðt � t0Þ ð4:57Þ

oT s

ot
¼ as

o2T s

ox2
ð4:58Þ
where t0 is the time, when the center of a Gaussian radiative heating distribution passes, m ¼ q00

lqcp
is the heating

rate. Hence, we have different temperature equations in the different materials and and a source term in the
layer. The heating rate is given by a Gaussian distribution
GðtÞ ¼
ffiffiffi
2

p

r
e�2 t

sð Þ2 ð4:59Þ
with effective heating time s. As initial conditions the constant temperature T 0 is prescribed in the whole do-
main. Physical boundary conditions of the problem are given at infinity in the form
lim
x!�1

T c ¼ finite lim
x!1

T s ¼ finite: ð4:60Þ
We assume a perfect thermal contact between the different media. Hence, the numerical simulations should
show the continuity of the solution at the interfaces
T cð0; tÞ ¼ T 0ð0; tÞ T 0ðl; tÞ ¼ T sðl; tÞ ð4:61Þ

as well as the continuity of the heat flux
kc

oT c

ox
ð0; tÞ ¼ k0

oT 0

ox
ð0; tÞ k0

oT 0

ox
ðl; tÞ ¼ ks

oT s

ox
ðl; tÞ ð4:62Þ
Because these conditions are already included in the construction of the dGRP heat flux, these relations
should be automatically reproduced.

The parameters in our calculations are chosen as follows: The thickness of the layer is l ¼ 0:27� 10�6 m,
the initial temperature is T 0 ¼ 300 K, the tangential heating rate distribution of the laser beam has a Gaussian
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distribution with radiative heat flux q00 ¼ 3:9 � 109 W=m2, effective heating time s ¼ 0:5 ls and the time
t0 ¼ 0:8� 10�6 s at which the center of the Gaussian passes.
Medium c
 Layer o
 Medium s
H ¼
ffiffiffiffiffiffiffiffiffiffi
kqcp

p
ðW

ffiffi
s
p
=m2KÞ
 750
 3026
 750
Diffusivity a ðm2=sÞ
 1:19� 10�7
 1:59� 10�6
 1:19� 10�7
Thickness l ðmÞ
 0:27� 10�6
The computed data is compared to the results given in [19]. Here, the problem was solved by a Laplace-
transformation with a series exact solution and a Pad like approximation. Fig. 11 shows the comparison of
the results for the stack temperature.

5. Conclusions

In this paper we propose an explicit discontinuous Galerkin scheme, called the STE-DG scheme, for the dis-
cretization of diffusion equations in the space–time domain of arbitrary high order of accuracy in space and
time. The scheme relies on a weak formulation of the diffusion equation introduced in [10] based on two partial
integrations of the diffusion fluxes. Numerical fluxes at cell interfaces are defined using a local exact solution of
an initial value problem with piecewise linear data. In this paper, we considered the case of discontinuous
diffusion coefficients at grid cell boundaries, which either occurs at interfaces between materials or in the non-
linear case. A basic building block of the STE-DG scheme is the Cauchy–Kovalevskaya procedure. Although
the DG scheme is always formulated in conservative variables, we show that in the Cauchy–Kovalevskaya pro-
cedure one may change to other variables which are related to the conservative variables by a unique mapping.
This can be of advantage, as heat conduction equations have often a much simpler form in terms of the
temperature.

For this explicit scheme, the size of the time step is limited by a stability condition. The stability was ana-
lyzed using the matrix method, and stability numbers for several scheme orders are given. Using this stability
analysis, the jump penalization parameter was optimized. A special feature of the STE-DG scheme is the pos-
sibility of introducing a time-consistent, fully conservative local time-stepping without significant computa-
tional overhead. Following the stability analysis for the uniform case, the choice of the jump penalization
parameter and the maximum stable time step are defined. Matrix stability analysis for non-uniform grid con-
figurations confirm these choices. The local time-stepping strongly enhances the efficiency in all situations
where the cell size or the element order vary over the computational domain and makes explicit schemes inter-
esting for transient calculations.

In order to validate the scheme, numerical experiments are presented. The experimental order of conver-
gence is tested for linear and nonlinear problems with different boundary conditions and with discontinuous
material constants. As our first applications we presented simulations of the transient temperature distribution
caused by laser coating of a flat plate and by the initialization of a compact disc.
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Appendix A. Derivation of the numerical fluxes

For the computation of the unsteady solution of the initial value problem (2.22) we use Laplace-transfor-
mation as described for example in [4]. We solve Eq. (2.22) separately for n1 < 0 and n1 > 0 and impose com-
patibility conditions at n1 ¼ 0. We denote the Laplace-transformation of vðn1; tÞ by wðn1; sÞ:
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Lfvðn1; tÞg ¼ wðn1; sÞ: ðA:1Þ

The Laplace-transformations of Eq. (2.22) for n1 > 0 : wþ and n1 < 0 : w� with the corresponding initial

conditions read as
o
2

on2
1

w� � s
l�

w� ¼ �
u� þ n1u�n1

l�
: ðA:2Þ
Solutions of the ordinary differential Eq. (A.2) are
w�ðn1; sÞ ¼ c�1 exp �
ffiffiffiffiffiffi
s

l�

r
n1

� �
þ c�2 exp

ffiffiffiffiffiffi
s

l�

r
n1

� �
þ u�

s
þ

u�n1

s
n1; ðA:3Þ
where c�1 and c�2 are arbitrary constants. As wþðn1; sÞ cannot grow exponentially for n1 !1; cþ2 has to be
zero. Likewise, c�1 has to be zero. The other two constants cþ1 and c�2 are determined by the conditions
wþð0; sÞ ¼ w�ð0; sÞ;
lþ owþ

on1
ð0; sÞ ¼ l� ow�

on1
ð0; sÞ; ðA:4Þ
which establish the spatial continuity of the solution w and the flux kwn1
n1 ¼ 0. Due to this continuity we re-

strict ourselves to the function wþ and get from (A.3)
wþðn1; sÞ ¼
�ðuþ � u�Þ ffiffiffiffiffiffiffiffisl�

p þ ðlþuþn1
� l�u�n1

Þ
s

ffiffiffiffiffiffiffiffi
slþ
p

þ ffiffiffiffiffiffiffiffi
sl�
p� � exp �

ffiffiffiffiffiffi
s

lþ

r
n1

� �
þ uþ

s
þ

uþn1

s
n1: ðA:5Þ
The flux at n1 ¼ 0 is then given by
f ð0; sÞ ¼ lþ
owþ

on1

ð0; sÞ ¼ sut
ffiffiffiffiffiffiffiffiffiffiffi
lþl�
pffiffi

s
p ffiffiffiffiffiffi

lþ
p

þ ffiffiffiffiffiffi
l�
p� �þ ffiffiffiffiffiffi

lþ
p

f �~n þ
ffiffiffiffiffiffi
l�
p

f þ~n
s

ffiffiffiffiffiffi
lþ
p

þ ffiffiffiffiffiffi
l�
p� � ðA:6Þ
with the trace operator sut :¼ uþ � u� and f �~n ¼ l�u�n1
. The transformation back results in the flux
f ð0; tÞ ¼ lþ
owþ

on1

ð0; tÞ ¼ sut
ffiffiffiffiffiffiffiffiffiffiffi
lþl�
pffiffiffiffiffi

pt
p ffiffiffiffiffiffi

lþ
p

þ ffiffiffiffiffiffi
l�
p� �þ ffiffiffiffiffiffi

lþ
p

f �~n þ
ffiffiffiffiffiffi
l�
p

f þ~nffiffiffiffiffiffi
lþ
p

þ ffiffiffiffiffiffi
l�
p : ðA:7Þ
This flux is singular at t ¼ 0, but the time-integral over a finite time step exists as an improper integral. We
average it over one time step and use this as numerical flux:
g~n :¼ 1

Dt

Z Dt

0

f ð0; tÞdt ¼ 2sut
ffiffiffiffiffiffiffiffiffiffiffi
lþl�
pffiffiffiffiffi

Dt
p ffiffiffi

p
p ffiffiffiffiffiffi

lþ
p

þ ffiffiffiffiffiffi
l�
p� �þ ffiffiffiffiffiffi

lþ
p

f �~n þ
ffiffiffiffiffiffi
l�
p

f þ~nffiffiffiffiffiffi
lþ
p

þ ffiffiffiffiffiffi
l�
p : ðA:8Þ
We next describe how to define the adjoint flux ga
~n. For this we determine the state uSk on the interface Sk as

given by the solution of the local Riemann problem (2.22) for t! 0þ, which can be computed by a back-trans-
formation of Eq. (A.5) at n1 ¼ 0:
uSk ¼ lim
t!0þ

vð0; tÞ ¼
ffiffiffiffiffiffi
lþ
p

uþ þ ffiffiffiffiffiffi
l�
p

u�ffiffiffiffiffiffi
lþ
p

þ ffiffiffiffiffiffi
l�
p : ðA:9Þ
Based on this value and using the rotational invariance we define the numerical flux
ga
~n ¼ ðuSk � u�Þl�/�n1

: ðA:10Þ
Here, we take the interior value of the diffusion coefficient l�, as in the derivation of the weak formulation,
this l belongs to the testfunction.
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